

Playing in the Fertilizer Band: How Can Strip-Till Perform on Your Acre?

Connor Sible and Jared Fender

Crop Physiology Laboratory Department of Crop Sciences University of Illinois Urbana-Champaign

1

Indiana CCA Conference December 9th, 2025

Crop Physiology Laboratory Team - 2025

Professor and Research Professor

Dr. Fred Below & Dr. Connor Sible

Principal Research Specialist

Juliann Seebauer

Principal Research Specialist

Jared Fender

Postdoctoral Research Associate

Dr. Marli Favoretto

Ph.D. Student

3

Sam Leskanich

Master's Students

- Gabriela Frigo Fernandes
- Ava Isaacs
- Derek Slifer
- Eric Morsink
- Wyatt Wessel

Visiting Research Scholars

- Renan Godoy de Marco
- · Arthur Stasiak Jadoski

Michel Bosmuller Lilian Gobel Kortstee

Crop Physiology Laboratory Team – 2025

Professor and Research Professor

· Dr. Fred Below & Dr. Connor Sible

Principal Research Specialist

Juliann Seebauer

Principal Research Specialist Jared Fender

Postdoctoral Research Associate

Dr. Marli Favoretto

Ph.D. Student

· Sam Leskanich

Master's Students

- Gabriela Frigo Fernandes
- Ava Isaacs
- Derek Slifer
- Eric Morsink
- Wyatt Wessel

Visiting Research Scholars

- Renan Godoy de Marco
- Arthur Stasiak Jadoski
- Michel Bosmuller
- Lilian Gobel Kortstee

Strip-Till Classroom #13

First Look: New Insights on Strip-Till **Nutrient Use Efficiency,** Placement & Timing This is your chance to see initial

findings from a brand-new strip-till research trial before anyone else. As a senior research specialist under Fred Below at the Univ. of Illinois. Jared

ment, timing, utilization of different tillage methods, fall vs. spring fertility and more. With the Madison conference serving as the big reveal. Fender covers different management factors that can help optimize practices within your strip-till operation, including hybrid selection and nutrient availability.

You'll Learn: Strip-till insights gleaned from year 1 of the Univ. of Illinois Crop Physiology Lab's strip-till trial and how different placement methods alter nutrient availability within strip-till systems.

Friday, August 9, 2024

Friday, August 1, 2025

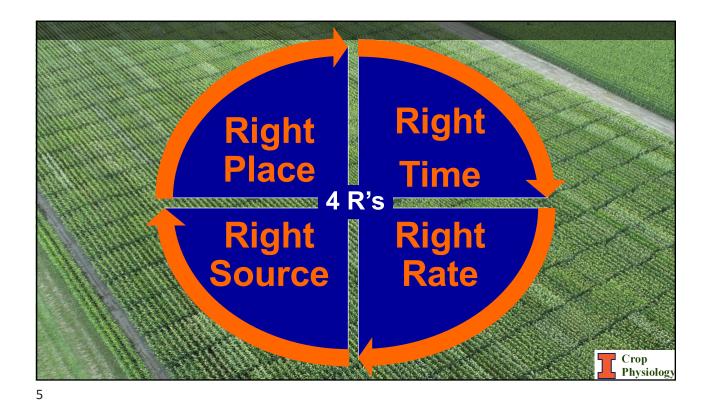
General Session: Rethinking Strip-Till Assumptions with Brand-New Data This is your chance to see the eye-open-

ing findings from a new strip-till research trial — before anyone else! As a senior research specialist under Dr. Fred Below at the Univ. of Illinois, **Jared Fender** launched a massive strip-till trial in 2023 focusing on fertilizer placement, timing, different tillage methods, hybrid selection, fall vs. spring fertility and more.

After revealing initial takeaways at last year's conference. Fender returns with a comprehensive breakdown of new data analysis to help optimize

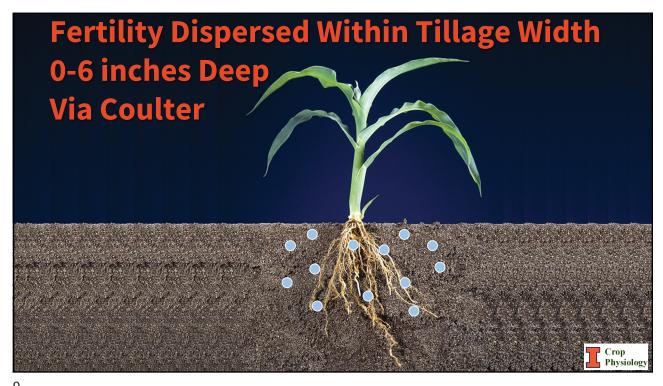
your own strip-till operation for 2025 and beyond.

You'll Learn: Insights gleaned from the first full growing season of the Univ. of Illinois Crop Physiology Lab's strip-till trial, how strip-till affects the root architecture of certain hybrids, which hybrids are best suited for strip-till & how different placement nethods alter nutrient availability.

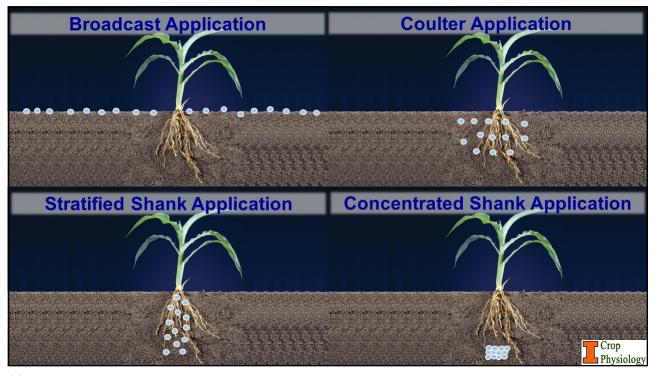


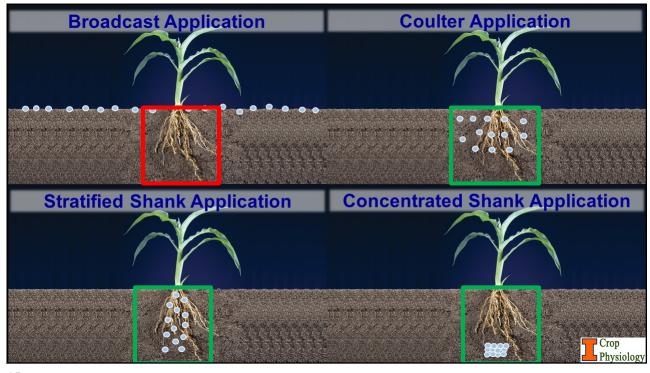
Univ. of Illinois

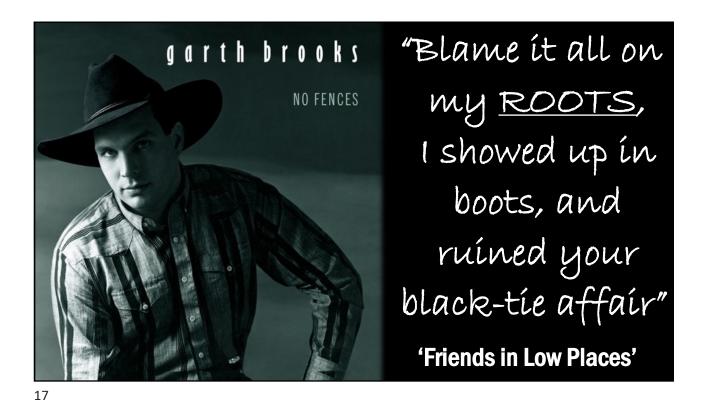

Physiology

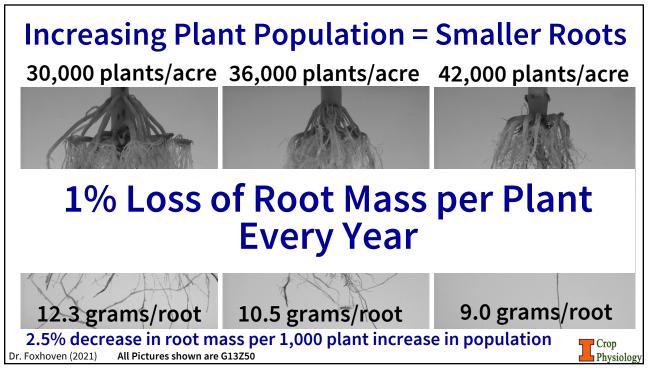


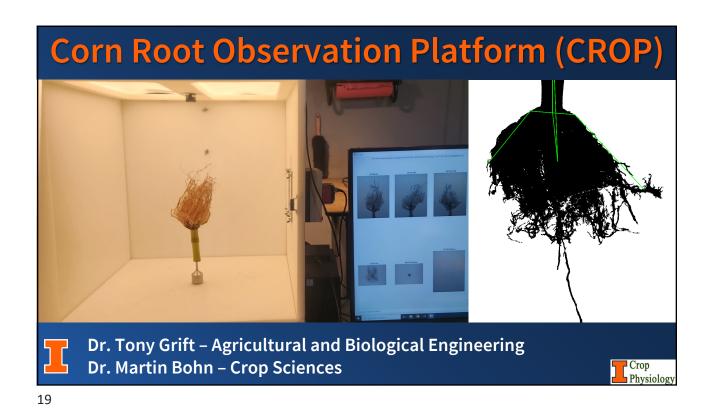
/





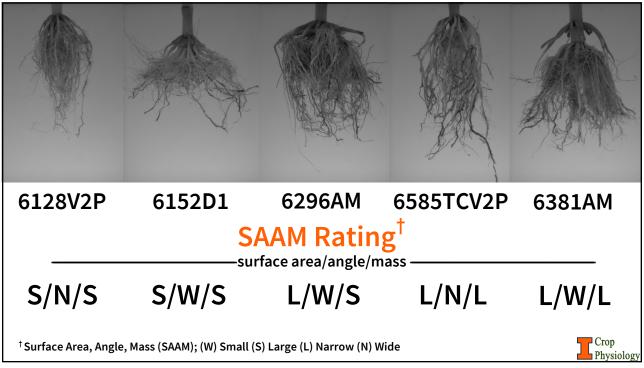


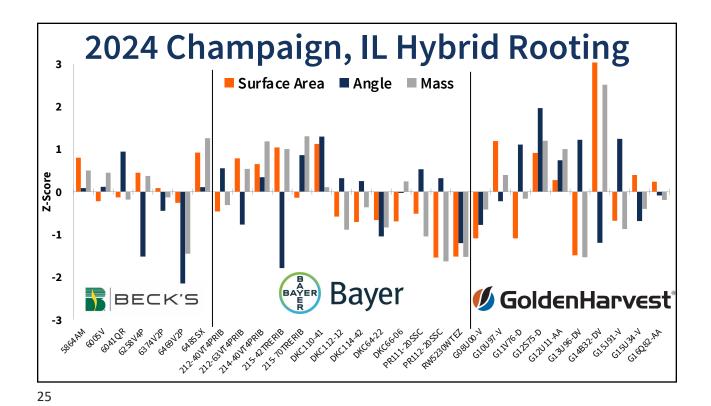



Core Concept #1

Fertilizer Placement Matters!

How we manage our tillage and fertilizer application can optimize nutrient availability


SAAM Rating



- Integrates root surface area, angle, and mass into one root characterization per hybrid
- Separates each measurement into two groups
 - Surface Area: Small/Large
 - Angle: Narrow/Wide
 - Mass: Small/Large
- Eight different SAAM Ratings to categorize hybrid root architecture

23

Core Concept #2

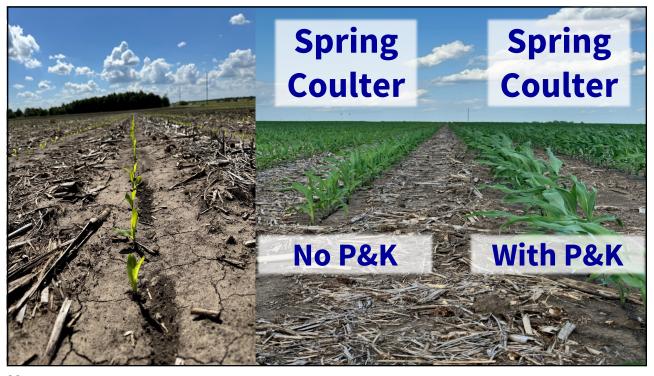
Hybrid root architecture varies!

Hybrid selection is likely to interact with tillage and fertilizer management.

The Crop Physiology Lab started strip-till trials in 2024, progressed into 2025...

What are we learning?

University of Illinois - Dept. of Crop Sciences


27

2024 Treatments				
Tillage	Fertility	Timing		
No-Till	None	Fall		
Conventional				
Strip-Till (x3)	Dry P&K	Spring		
		T Crop Physiology		

2024 Treatments					
Tillage	Fertility	Timing			
 No-Till Broadcast Conventional-Till 	P: 75lbs/acre of P2O5 from MESZ	Fall			
Broadcast 3. Coulter Applied	K: 60lbs/acre of K2O from MOP				
4. Shank Stratified5. Shank Concentrated	N: 175 units of N from UAN32 (spring applied)	Spring			
		Crop			

Root Mass	(grams)
------------------	---------

Product	Fertility Timing	Root Mass
None	Fall	14.3
None	Spring	13.9
DOK	Fall	15.0
P&K	Spring	16.0*
LSD (0.05) = 0.9148		Crop Physiology

Root Mass (grams)

Placement	Fall UTC	Fall Fertility	Spring UTC	Spring Fertility
Coulter	14.7 =	14.6	13.0	→ 16.1
Stratified Shank	14.4	15.0	14.2	→ 16.1
Concentrated Shank	13.8	15.5	14.5	→ 15.9
Average	14.3	15.0	13.9	16.0
				Crop Physiology

Fertility Increases Root Mass

	Fall	Fall	Spring	Spring
Placement	UTC	Fertility	UTC	Fertility
Coulter	14.7	14.6	13.0	→ 16.1
Stratified Shank	14.4	15.0	14.2	→ 16.1
Concentrated Shank	13.8	15.5	14.5	→ 15.9
Average	14.3	15.0	13.9	16.0
				Crop Physiology

35

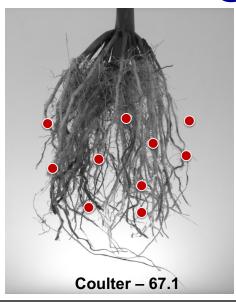
Root Observations

- ✓ Fertility (spring especially) improves root biomass, P likely still available
- What other root characteristics are affected?

Root Angle (degrees)

Tillage	Angle
Coulter	69.7
Stratified Shank	73.0
Concentrated Shank	75.6
	Т Сгор

37


Root Angle (degrees)

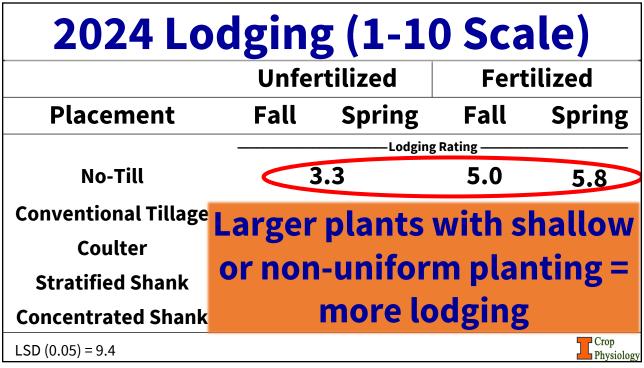
Crop Physiolog

Root Angle (degrees)

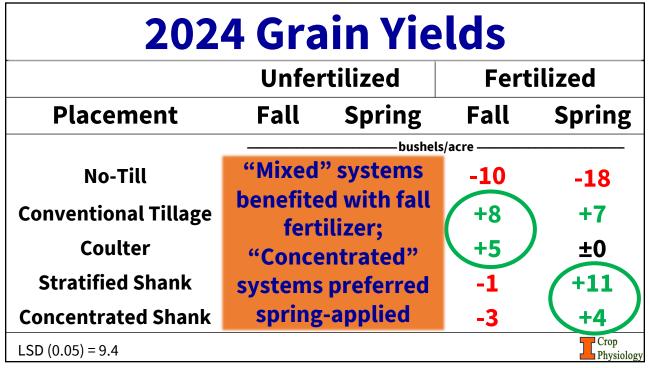
39

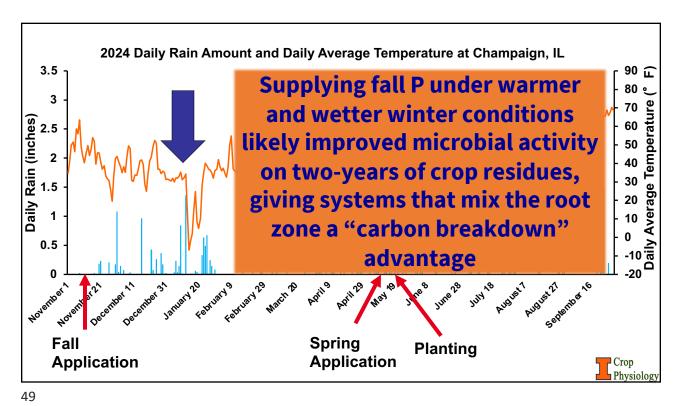
Root Observations

- ✓ Fertility (spring especially) improves root biomass, P likely still available
- ✓ Fall fertility and concentrated placement result in wider-growing root angles (searching for P&K)


2024 Grain Yields					
	Unfertilized Fertilized				
Placement	Fall	Spring	Fall	Spring	
		bushels/acre			
No-Till					
Conventional Tillage					
Coulter					
Stratified Shank					
Concentrated Shank					
LSD (0.05) = 9.4				Crop Physiology	

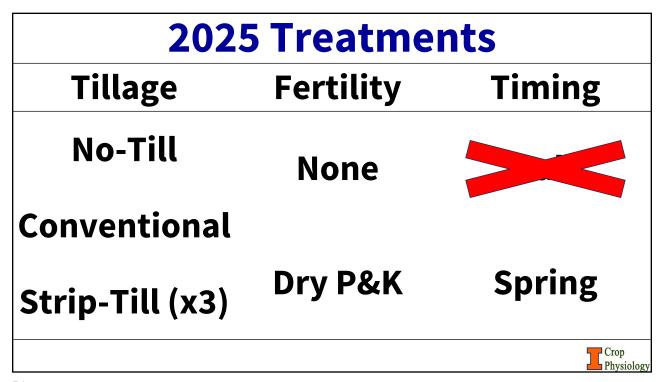
2024 Grain Yields					
Unfertilized Fertilized					
Placement	Fall	Spring	Fall	Spring	
		bush	els/acre		
No-Till	2	No Large Yield			
Conventional Tillage	2	.55		rence	
Coulter	259	258			
Stratified Shank	256 251 Among Tillag				
Concentrated Shank	261 257 Practices			ctices	
LSD (0.05) = 9.4				Crop Physiology	

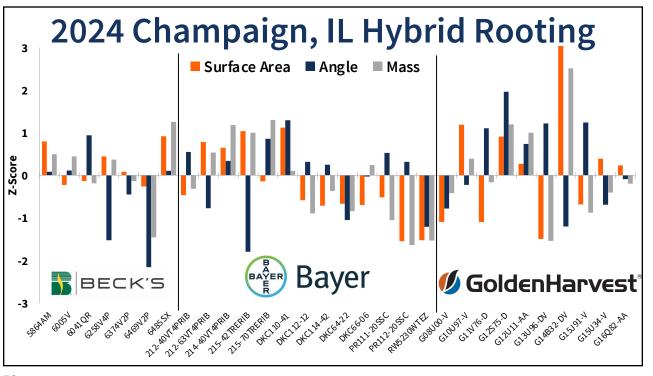

2024 Grain Yields					
Unfertilized Fertilized					
Placement	Fall Spring Fall Spring				
		——bus	shels/acre ———		
No-Till	Fall Tended to			nded to	
Conventional Tillage	2	.55	have a	small	
Coulter	+1	258	benefit ov	er spring	
Stratified Shank	+5 251 - mellowing of			wing of	
Concentrated Shank	+4 257 strips				
LSD (0.05) = 9.4				Crop Physiology	


2024 Grain Yields						
Unfertilized Fertilized						
Placement	Fall	Spring	Fall	Spring		
	bushels/acre					
No-Till	2	.59	249	241		
Conventional Tillage	2	255	263	262		
Coulter	259	258	263	258		
Stratified Shank	256	251	255	262		
Concentrated Shank	261	257	264	261		
LSD (0.05) = 9.4				Crop Physiology		

2024 Grain Yields				
Unfertilized Fertilized				
Placement	Fall	Spring	Fall	Spring
		bushe	ls/acre	
No-Till	259		-10	-18
Conventional Tillage	2	.55		
Coulter	259	258		
Stratified Shank	256	251		
Concentrated Shank	261	257		
LSD (0.05) = 9.4				Crop Physiology

2024 Grain Yields				
	Unfe	rtilized	Fertilized	
Placement	Fall	Spring	Fall	Spring
	bushels/acre			
No-Till	2	.59	-10	-18
Conventional Tillage	2	.55		
Coulter	259	258		
Stratified Shank	256	251		
Concentrated Shank	261	257		
LSD (0.05) = 9.4				Crop Physiology


2024 Showed Us...

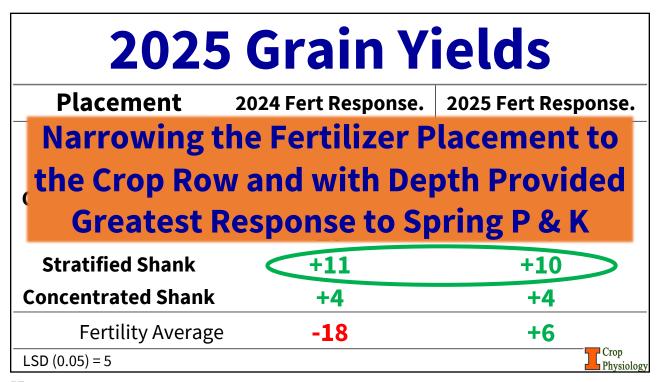


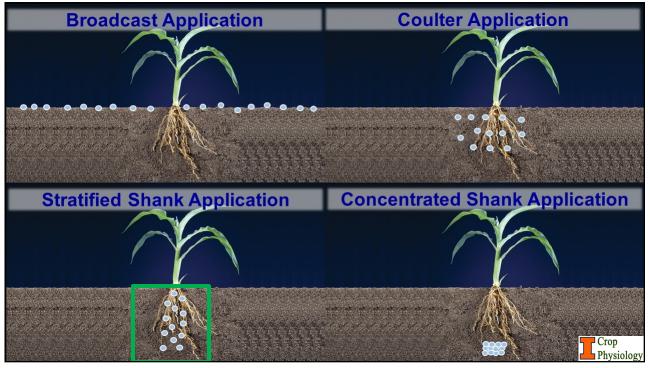
- In the absence of fertilizer, all tillage was the same, some benefit to fall application
- Fall fertilizer performed better when applied in a more "mixed" manner - fall had wider roots
- Spring fertilizer performed better when applied in a more concentrated approach – larger root gain

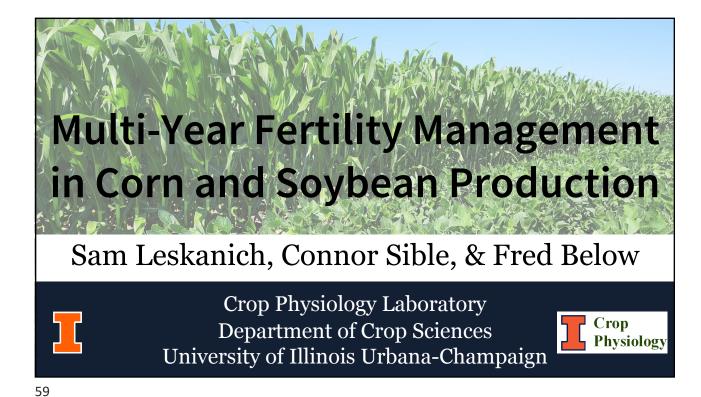
University of Illinois - Dept. of Crop Sciences

2025 Hybrid x Tillage

Dekalb	Golden Harvest	Becks	LG	Channel
114-99 VT4PRO	15J91-V	6280V2P	62C73VT2	215-70TRE
110-41 TRE	14B32-DV	6469V2P	02073172	
66-06 TRE	13M31-AA	6485SX	64C43VT2	212-63VT4
114-42 SSPRO	13U96-DV	6344SXP	04043112	212-03114
			A Design	Crop


53


2025 Grain Yields


Placement	Unfertilized	Fertilized		
	bushels/acre			
No-Till	280	No Large Yield		
Conventional Tillage	282	Difference		
Coulter	279			
Stratified Shank	278	Among Tillage		
Concentrated Shank	277	Practices		
Fertility Average	279			
LSD (0.05) = 5		Crop Physiolog		

2025 Grain Yields			
Placement	Unfertilized	Fertilized	
	bushels/acre		
No-Till	280	290	
Conventional Tillage	282	285	
Coulter	279	283	
Stratified Shank	278	288	
Concentrated Shank	277	281	
Fertility Average	279	285	
LSD (0.05) = 5		Crop Physiology	

2025 Grain Yields				
Placement	Unfertilized	Fertilized		
	bushels/acre			
No-Till	280	+10		
Conventional Tillage	282	+3		
Coulter	279	+4		
Stratified Shank	278	+10		
Concentrated Shank	277	+4		
Fertility Average	279	+6		
LSD (0.05) = 5		Crop Physiology		

Research Questions

- What are the long-term effects of multi-year fertilizer applications?
 - Do soybeans like "old" fertility?
- Are multi-year blends more economical in a long-term fertility system?

Treatments			
Treatment	Years Applied		
Untreated Control (<u>UTC</u>)	-		
Biennial Corn-Only Application	2021, 2023		
Annual Application to Either Crop	2021, 2022, 2023, 2024		
Biennial <u>Two-Crop</u> Amount	2021, 2023		
Single <u>Four-Crop</u> Amount	2021		
All corn treatments were balanced for 180 lbs N/acre with urea Crop Physiological Phy			

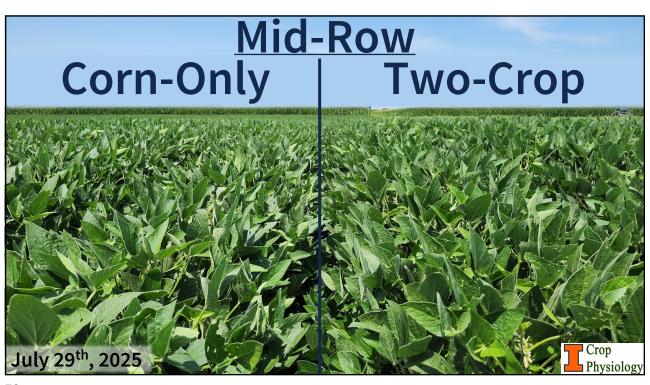
4 Year Grain Yield Summary				
Treatment	2021	2022	2023	2024
Heatment	Corn	Soybean	Corn	Soybean
	-	——bushels	/acre ———	
UTC	258			
Corn-Only	264+6	+4	+	8 +5
Annual	262 +4	-1	+	7 +5
Two-Crop	266 +8	+5	+	14 +4
Four-Crop	262 +4	+2	+	10 +4
LSD(0.1)	ns			
				Crop Physiology

4-Year Summary The Two-Crop Fertilization Produced the Greatest Yields, Highest Soil Tests, and a Sustainable ROI

63

2024 Strip-Till Grain Yield

Treatment	Year 1 Corn	
	bushels/acre	
UTC	240	
Corn-Only	252 +12	
Two-Crop	254 +14	
LSD(0.1)	6	
	T Crop Physiology	


65

2025 Soybean Strip-Till Grain Yield			
Planting Position			
Treatment	On-Strip	Mid-Row	Average
———bushels/acre ———			
UTC	53.4	54. 8	54.1 ^B
Corn-Only	55.1	57.4	56.3 ^A
Two-Crop	56.5	57.0	56.7 ^A
Average	55.0	56.7	
			Crop

2024 & 2025 Strip-Till Grain Yield			
Treatment	Corn	Soybean [†]	
	———bushels/acre ———		
UTC	240	54.1	
Corn-Only	252+5.0%	56.3+4.1%	
Two-Crop	254+5.8%	56.7+4.8%	
LSD(α=0.1)	6	2.0	
† Soybean Yields averaged over two planting placements.			

Strip-Till Grain Yield Findings I

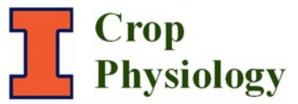
- The Two-Crop fertilization produced only 0.7-0.8% more yield than Corn-Only, showing that reduction of rates can be implemented for the short-term in a strip-till system due to the concentration of nutrients.
- Avoiding corn residue by shifting the soybean row position to the mid-row resulted in a slight yield increase through numerically greater seed numbers and weights.
- Fertilizing in the mid-row slightly increased seed weights.

73

In Summary

- Tillage × Fertilizer Strategies Vary
 - There is no "one size fits all"
 - Understand how each system works
 - Optimize hybrid selection to fit your system
- Strip-Till Can Offer Maintained or Improved Yield
 - Strip-till does not have to 'beat' conventional
 - There can be long-term gains to residue preservation and systems management

University of Illinois - Dept. of Crop Sciences


Thank You to Indiana CCA!

More info at:

Crop Physiology Laboratory

University of Illinois

http://cropphysiology.cropsci.illinois.edu

University of Illinois - Dept. of Crop Sciences

